Multi-modal background-aware for defect semantic segmentation with limited data
Dexing Shan,
Yunzhou Zhang () and
Shitong Liu
Additional contact information
Dexing Shan: Northeastern University
Yunzhou Zhang: Northeastern University
Shitong Liu: Northeastern University
Journal of Intelligent Manufacturing, 2025, vol. 36, issue 5, No 19, 3313-3325
Abstract:
Abstract Visual defect detection is widely used in intelligent manufacturing to achieve intelligent detection of product quality. Two main challenges remain in industrial applications. One is the scarcity of defect samples and the other is the weak texture variation of industrial defects. The above problems lead to the application of RGB image-based industrial defect segmentation. To this end, we propose a multi-modal background-aware network (MMBA-Net) for few-shot defect (2D+3D) segmentation with limited data, which can segment texture and structural defects in unseen and seen domains (objects). To synthesize the perception capabilities of different imaging conditions, MMBA-Net exploits the point cloud to provide spatial information for the RGB images. Furthermore, we found that background regions are perceptually consistent within an industrial image, which can be leveraged to discriminate between foreground and background regions. To implement this idea, we model correlation learning between multi-modal query samples and multi-modal normal (defect-free) samples as an optimal transport problem, establishing robust multi-modal background correlations between query and normal samples across different modalities. Experiments were conducted on real-world industrial products and food datasets, demonstrating that the proposed method can perform effective base learning and meta-learning on a small number of defective samples (approximately 15–25 defective training samples) to achieve effective segmentation of defects in the seen and unseen domains.
Keywords: Few-shot defect segmentation; Multi-modal fusion; Optimal transport; Neural network (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02373-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02373-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-024-02373-8
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().