EconPapers    
Economics at your fingertips  
 

Leveraging computer vision towards high-efficiency autonomous industrial facilities

Ibrahim Yousif, Liam Burns, Fadi El Kalach and Ramy Harik ()
Additional contact information
Ibrahim Yousif: University of South Carolina
Liam Burns: University of South Carolina
Fadi El Kalach: University of South Carolina
Ramy Harik: University of South Carolina

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 5, No 3, 2983-3008

Abstract: Abstract Manufacturers face two opposing challenges: the escalating demand for customized products and the pressure to reduce delivery lead times. To address these expectations, manufacturers must refine their processes, to achieve highly efficient and autonomous operations. Current manufacturing equipment deployed in several facilities, while reliable and produces quality products, often lacks the ability to utilize advancements from newer technologies. Since replacing legacy equipment may be financially infeasible for many manufacturers, implementing digital transformation practices and technologies can overcome the stated deficiencies and offer cost-affordable initiatives to improve operations, increase productivity, and reduce costs. This paper explores the implementation of computer vision, as a cutting-edge, cost-effective, open-source digital transformation technology in manufacturing facilities. As a rapidly advancing technology, computer vision has the potential to transform manufacturing operations in general, and quality control in particular. The study integrates a digital twin application at the endpoint of an assembly line, effectively performing the role of a quality officer by utilizing state-of-the-art computer vision algorithms to validate end-product assembly orientation. The proposed digital twin, featuring a novel object recognition approach, efficiently classifies objects, identifies and segments errors in assembly, and schedules the paths through the data pipeline to the corresponding robot for autonomous correction. This minimizes the need for human interaction and reduces disruptions to manufacturing operations.

Keywords: Smart manufacturing; Digital transformation; Digital twin; Automated visual; Inspection; Autonomous machine correction; Autonomous manufacturing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02396-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02396-1

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-21
Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1