Selecting subsets of source data for transfer learning with applications in metal additive manufacturing
Yifan Tang (),
Mostafa Rahmani Dehaghani (),
Pouyan Sajadi () and
G. Gary Wang ()
Additional contact information
Yifan Tang: Simon Fraser University
Mostafa Rahmani Dehaghani: Simon Fraser University
Pouyan Sajadi: Simon Fraser University
G. Gary Wang: Simon Fraser University
Journal of Intelligent Manufacturing, 2025, vol. 36, issue 5, No 13, 3185-3206
Abstract:
Abstract Considering data insufficiency in metal additive manufacturing (AM), transfer learning (TL) has been adopted to extract knowledge from source domains (e.g., completed printings) to improve the modeling performance in target domains (e.g., new printings). Current applications use all accessible source data directly in TL with no regard to the similarity between source and target data. This paper proposes a systematic method to find appropriate subsets of source data based on similarities between the source and limited target datasets. Such similarity is characterized by the spatial and model distance metrics. A Pareto frontier-based source data selection method is developed, where the source data located on the Pareto frontier defined by two similarity distance metrics are selected iteratively. This method is integrated into an instance-based TL method (decision tree regression model) and a model-based TL method (fine-tuned artificial neural network). Both models are then tested on several regression tasks in metal AM. Comparison results demonstrate that (1) the source data selection method is general and supports integration with various TL methods and distance metrics, (2) compared with using all source data, the proposed method can find a subset of source data from the same domain with better TL performance in metal AM regression tasks involving different processes and machines, and (3) when multiple source domains exist, the source data selection method could find the subset from one source domain to obtain comparable or better TL performance than the model constructed using data from all source domains.
Keywords: Metal additive manufacturing; Transfer learning; Source data selection; Pareto frontier (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02402-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02402-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-024-02402-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().