EconPapers    
Economics at your fingertips  
 

Real-time monitoring of molten zinc splatter using machine learning-based computer vision

Callum O’Donovan (), Cinzia Giannetti () and Cameron Pleydell-Pearce ()
Additional contact information
Callum O’Donovan: Swansea University
Cinzia Giannetti: Swansea University
Cameron Pleydell-Pearce: Swansea University

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 5, No 23, 3399-3425

Abstract: Abstract During steel galvanisation, immersing steel strip into molten zinc forms a protective coating. Uniform coating thickness is crucial for quality and is achieved using air knives which wipe off excess zinc. At high strip speeds, zinc splatters onto equipment, causing defects and downtime. Parameters such as knife positioning and air pressure influence splatter severity and can be optimised to reduce it. Therefore, this paper proposes a system that converges computer vision and manufacturing whilst addressing some challenges of real-time monitoring in harsh industrial environments, such as the extreme heat, metallic dust, dynamic machinery and high-speed processing at the galvanising site. The approach is primarily comprised of the Counting (CNT) background subtraction algorithm and YOLOv5, which together ensure robustness to noise produced by heat distortion and dust, as well as adaptability to the highly dynamic environment. The YOLOv5 element achieved precision, recall and mean average precision (mAP) values of 1. When validated against operator judgement using mean average error (MAE), interquartile range, median and scatter plot analysis, it was found that there was more discrepancy between the two operators than the operators and the model.This research also strategises the deployment process for integration into the galvanising line. The model proposed allows real-time monitoring and quantification of splatter severity which provides valuable insights into root-cause analysis, process optimisation and maintenance strategies. This research contributes to the digital transformation of manufacturing and whilst solving a current problem, also plants the seed for many other novel applications.

Keywords: Galvanisation; Steel manufacturing; Computer vision; Deep learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02418-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02418-y

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02418-y

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-21
Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02418-y