Development of data-driven, physics-based, and hybrid prognosis frameworks: a case study for gear remaining useful life prediction
Pradeep Kundu (),
Ashish K. Darpe and
Makarand S. Kulkarni
Additional contact information
Pradeep Kundu: KU Leuven
Ashish K. Darpe: Indian Institute of Technology Delhi
Makarand S. Kulkarni: Indian Institute of Technology Bombay
Journal of Intelligent Manufacturing, 2025, vol. 36, issue 7, No 18, 4823-4843
Abstract:
Abstract Data-driven, physics-based, and hybrid prognosis frameworks can be developed to estimate remaining useful life, depending on the availability of condition monitoring sensor data and physics-governing equations. No systematic study is available that shows the comparative performance of these frameworks. The present study, for the first time, attempts to show how these three frameworks can be developed under different scenarios and assumptions. The data-driven prognosis framework is developed using an accelerometer signal and an Artificial Intelligence-based random forest regression (RFR) model. A pit growth model inspired by the Paris crack growth law has been used for physics-based prognosis framework development. In this framework, sensor data is needed to know the gear’s current health status, as the prognosis framework can't be developed purely on physics. A hybrid prognosis framework is developed using two alternate approaches: one in which current health status is obtained directly from a visual inspection camera and the other in which this status is indirectly inferred from the accelerometer sensor data. In each case, the RUL prediction is made using a physics-based pit growth model coupled with the current health status obtained from either of the two approaches mentioned. To enhance the prediction accuracy, Bayesian inference is used to update the physics-based pit growth model parameters in both hybrid frameworks. Data obtained from five run-to-failure experiments performed on a specially designed gearbox test setup are used to show the comparative performance of these frameworks. The strengths and weaknesses of each of the frameworks are discussed based on the type of data requirement, model definition, parameter estimation, and prediction error.
Keywords: Gear; Condition monitoring; Remaining useful life; Data-driven prognosis; Physics-based prognosis; Hybrid prognosis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02477-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02477-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-024-02477-1
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().