EconPapers    
Economics at your fingertips  
 

Knowledge graph-enhanced multi-agent reinforcement learning for adaptive scheduling in smart manufacturing

Zhaojun Qin and Yuqian Lu ()
Additional contact information
Zhaojun Qin: The University of Auckland
Yuqian Lu: The University of Auckland

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 8, No 34, 5943-5966

Abstract: Abstract Self-organizing manufacturing network has emerged as a viable solution for adaptive manufacturing control within the mass personalization paradigm. This approach involves three critical elements: system modeling and control architecture, interoperable communication, and adaptive manufacturing control. However, current research often separates interoperable communication from adaptive manufacturing control as isolated areas of study. To address this gap, this paper introduces Knowledge Graph-enhanced Multi-Agent Reinforcement Learning (MARL) method that integrates interoperable communication via Knowledge Graphs with adaptive manufacturing control through Reinforcement Learning. We hypothesize that implicit domain knowledge obtained from historical production job allocation records can guide each agent to learn more effective scheduling policies with accelerated learning rates. This is based on the premise that machine assignment preferences effectively could reduce the Reinforcement Learning search space. Specifically, we redesign machine agents with new observation, action, reward, and cooperation mechanisms considering the preference of machines, building upon our previous MARL base model. The scheduling policies are trained under extensive simulation experiments that consider manufacturing requirements. During the training process, our approach demonstrates improved training speed compared with individual Reinforcement Learning methods under the same training hyperparameters. The obtained scheduling policies generated by our Knowledge Graph-enhanced MARL also outperform both individual Reinforcement Learning methods and heuristic rules under dynamic manufacturing settings.

Keywords: Mass personalization; Self-organizing manufacturing network; Knowledge graph; Reinforcement learning; Production scheduling (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02494-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:8:d:10.1007_s10845-024-02494-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02494-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-02
Handle: RePEc:spr:joinma:v:36:y:2025:i:8:d:10.1007_s10845-024-02494-0