Multipoint Boundary-Value Solution of Two-Point Boundary-Value Problems
H. Pasic
Additional contact information
H. Pasic: University of Sarajevo
Journal of Optimization Theory and Applications, 1999, vol. 100, issue 2, No 10, 397-416
Abstract:
Abstract An iterative scheme, in which two-point boundary-value problems (TPBVP) are solved as multipoint boundary-value problems (MPBVP), which are independent TPBVPs in each iteration and on each subdomain, is derived for second-order ordinary differential equations. Several equations are solved for illustration. In particular, the algorithm is described in detail for the first boundary-value problem (FBVP) and second boundary-value problem (SBVP). A possible extension to higher-order BVPs is discussed briefly. The procedure may be used when the original TPBVP cannot be solved (does not converge) in a single long domain. It is suitable for implementation on computers with parallel processing. However, that issue is beyond the scope of this paper. The long domain is cut into a large number of subdomains and, based on assumed boundary conditions at the interface points, the resulting local BVPs are solved by any convenient conventional method. The local solutions are then patched by using simple matching formulas, which are derived below, rather than solving large systems of algebraic equations, as it is done in similar existing methods. Assuming that the local solutions are obtained by the most efficient methods, the overall convergence speed depends on the speed of matching. The proposed matching algorithm is based on a fixed-point iteration and has only a linear convergence rate. The rate can be made quadratic by applying standard accelerating schemes, which is beyond the scope of this article.
Keywords: Two-point boundary-value problems; multipoint boundary-value problems; parallel computation; multiple shooting (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1021742521630 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:100:y:1999:i:2:d:10.1023_a:1021742521630
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1021742521630
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().