Optimal Control of a Ship for Course Change and Sidestep Maneuvers
A. Miele,
T. Wang,
C. S. Chao and
J. B. Dabney
Additional contact information
A. Miele: Rice University
T. Wang: Rice University
C. S. Chao: Rice University
J. B. Dabney: Rice University
Journal of Optimization Theory and Applications, 1999, vol. 103, issue 2, No 1, 259-282
Abstract:
Abstract We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time. Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point. Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point. The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate. The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.
Keywords: Equations of motion; kinematics; dynamics; hydrodynamics; ship maneuvers; optimal ship maneuvers; course change maneuvers; sidestep maneuvers; control transformation; singularity avoiding transformation; sequential gradient-restoration algorithm (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1023/A:1021796501467 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:103:y:1999:i:2:d:10.1023_a:1021796501467
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1021796501467
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().