Multiobjective Control Approximation Problems: Duality and Optimality
G. Wanka
Additional contact information
G. Wanka: Technical University Chemnitz
Journal of Optimization Theory and Applications, 2000, vol. 105, issue 2, No 11, 457-475
Abstract:
Abstract A general convex multiobjective control approximation problem is considered with respect to duality. The single objectives contain linear functionals and powers of norms as parts, measuring the distance between linear mappings of the control variable and the state variables. Moreover, linear inequality constraints are included. A dual problem is established, and weak and strong duality properties as well as necessary and sufficient optimality conditions are derived. Point-objective location problems and linear vector optimization problems turn out to be special cases of the problem investigated. Therefore, well-known duality results for linear vector optimization are obtained as special cases.
Keywords: multiobjective optimization; control approximation problems; point-objective location; duality; optimality conditions (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/A:1004622204554 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:105:y:2000:i:2:d:10.1023_a:1004622204554
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1004622204554
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().