On the Stability of Globally Projected Dynamical Systems
Y. S. Xia and
J. Wang
Additional contact information
Y. S. Xia: Chinese University of Hong Kong
J. Wang: Chinese University of Hong Kong
Journal of Optimization Theory and Applications, 2000, vol. 106, issue 1, No 7, 129-150
Abstract:
Abstract Two types of projected dynamical systems, whose equilibrium states solve the corresponding variational inequality problems, were proposed recently by Dupuis and Nagurney (Ref. 1) and by Friesz et al. (Ref. 2). The stability of the dynamical system developed by Dupuis and Nagurney has been studied completely (Ref. 3). This paper analyzes and proves the global asymptotic stability of the dynamical system proposed by Friesz et al. under monotone and symmetric mapping conditions. Furthermore, the dynamical system is shown to be globally exponentially stable under stronger conditions. Finally, we show that the dynamical system proposed by Friesz et al. can be applied easily to neural networks for solving a class of optimization problems.
Keywords: Projected dynamical systems; variational inequalities; stability theory (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1023/A:1004611224835 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:106:y:2000:i:1:d:10.1023_a:1004611224835
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1004611224835
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().