Inexact Perturbed Newton Methods and Applications to a Class of Krylov Solvers
E. Cătinaş
Additional contact information
E. Cătinaş: Romanian Academy of Sciences
Journal of Optimization Theory and Applications, 2001, vol. 108, issue 3, No 5, 543-570
Abstract:
Abstract Inexact Newton methods are variant of the Newton method in which each step satisfies only approximately the linear system (Ref. 1). The local convergence theory given by the authors of Ref. 1 and most of the results based on it consider the error terms as being provided only by the fact that the linear systems are not solved exactly. The few existing results for the general case (when some perturbed linear systems are considered, which in turn are not solved exactly) do not offer explicit formulas in terms of the perturbations and residuals. We extend this local convergence theory to the general case, characterizing the rate of convergence in terms of the perturbations and residuals. The Newton iterations are then analyzed when, at each step, an approximate solution of the linear system is determined by the following Krylov solvers based on backward error minimization properties: GMRES, GMBACK, MINPERT. We obtain results concerning the following topics: monotone properties of the errors in these Newton–Krylov iterates when the initial guess is taken 0 in the Krylov algorithms; control of the convergence orders of the Newton–Krylov iterations by the magnitude of the backward errors of the approximate steps; similarities of the asymptotical behavior of GMRES and MINPERT when used in a converging Newton method. At the end of the paper, the theoretical results are verified on some numerical examples.
Keywords: Nonlinear systems; (inexact) Newton methods; (inexact) perturbed Newton methods; convergence orders; linear systems; backward errors; Krylov methods (GMRES; GMBACK; MINPERT); Newton–Krylov methods (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1017583307974 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017583307974
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1017583307974
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().