Efficient Sets of Convex Compacta are Arcwise Connected
E. K. Makarov and
N. N. Rachkovski
Additional contact information
E. K. Makarov: National Academy of Sciences of Belarus
N. N. Rachkovski: Belorussian State Pedagogical University
Journal of Optimization Theory and Applications, 2001, vol. 110, issue 1, No 8, 159-172
Abstract:
Abstract We prove that the efficient point set Max(Q|K) of a compact convex set Q⊂X in a Hausdorff topological vector space X ordered by a closed convex pointed cone K⊂X with nonempty K +i:={l⊂K\{0}:l(x)>0} is arcwise connected.
Keywords: vector optimization; efficient set; arcwise connectedness (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1017599614183 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:110:y:2001:i:1:d:10.1023_a:1017599614183
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1017599614183
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().