Partitioned Random Search for Global Optimization with Sampling Cost and Discounting Factor
H. Q. Ye and
Z. B. Tang
Journal of Optimization Theory and Applications, 2001, vol. 110, issue 2, No 11, 445-455
Abstract:
Abstract The method of partitioned random search has been proposed in recent years to obtain an as good as possible solution for the global optimization problem (1). A practical algorithm has been developed and applied to real-life problems. However, the design of this algorithm was based mainly on intuition. The theoretical foundation of the method is an important issue in the development of efficient algorithms for such problems. In this paper, we generalize previous theoretical results and propose a sequential sampling policy for the partitioned random search for global optimization with sampling cost and discounting factor. A proof of the optimality of the proposed sequential sampling policy is given by using the theory of optimal stopping.
Keywords: Global optimization; partitioned random search; sequential samples; dynamic programming (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1017539732327 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:110:y:2001:i:2:d:10.1023_a:1017539732327
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1017539732327
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().