Characterizations of Variable Domination Structures via Nonlinear Scalarization
G. Y. Chen and
X. Q. Yang
Additional contact information
G. Y. Chen: Institute of Systems Science
X. Q. Yang: Hong Kong Polytechnic University
Journal of Optimization Theory and Applications, 2002, vol. 112, issue 1, No 5, 97-110
Abstract:
Abstract In this paper, a nonlinear scalarization function is introduced for a variable domination structure. It is shown that this function is positively homogeneous, subadditive, and strictly monotone. This nonlinear function is then applied to characterize the weakly nondominated solution of multicriteria decision making problems and the solution of vector variational inequalities.
Keywords: Variable domination structures; nondominated solutions; nonlinear scalarization; vector optimization; vector variational inequality (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://link.springer.com/10.1023/A:1013044529035 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:112:y:2002:i:1:d:10.1023_a:1013044529035
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1013044529035
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().