EconPapers    
Economics at your fingertips  
 

Convergence and Application of a Decomposition Method Using Duality Bounds for Nonconvex Global Optimization

N.V. Thoai
Additional contact information
N.V. Thoai: University of Trier

Journal of Optimization Theory and Applications, 2002, vol. 113, issue 1, No 10, 165-193

Abstract: Abstract The subject of this article is a class of global optimization problems, in which the variables can be divided into two groups such that, in each group, the functions involved have the same structure (e.g. linear, convex or concave, etc.). Based on the decomposition idea of Benders (Ref. 1), a corresponding master problem is defined on the space of one of the two groups of variables. The objective function of this master problem is in fact the optimal value function of a nonlinear parametric optimization problem. To solve the resulting master problem, a branch-and-bound scheme is proposed, in which the estimation of the lower bounds is performed by applying the well-known weak duality theorem in Lagrange duality. The results of this article concentrate on two subjects: investigating the convergence of the general algorithm and solving dual problems of some special classes of nonconvex optimization problems. Based on results in sensitivity and stability theory and in parametric optimization, conditions for the convergence are established by investigating the so-called dual properness property and the upper semicontinuity of the objective function of the master problem. The general algorithm is then discussed in detail for some nonconvex problems including concave minimization problems with a special structure, general quadratic problems, optimization problems on the efficient set, and linear multiplicative programming problems.

Keywords: Global optimization; nonconvex optimization; decomposition; nonlinear parametric optimization; branch-and-bound schemes (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1023/A:1014865432210 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:113:y:2002:i:1:d:10.1023_a:1014865432210

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1023/A:1014865432210

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:113:y:2002:i:1:d:10.1023_a:1014865432210