Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization
D.P. Bertsekas and
A.E. Ozdaglar
Additional contact information
D.P. Bertsekas: Massachusetts Institute of Technology
A.E. Ozdaglar: Massachusetts Institute of Technology
Journal of Optimization Theory and Applications, 2002, vol. 114, issue 2, No 3, 287-343
Abstract:
Abstract We consider optimization problems with equality, inequality, and abstract set constraints, and we explore various characteristics of the constraint set that imply the existence of Lagrange multipliers. We prove a generalized version of the Fritz–John theorem, and we introduce new and general conditions that extend and unify the major constraint qualifications. Among these conditions, two new properties, pseudonormality and quasinormality, emerge as central within the taxonomy of interesting constraint characteristics. In the case where there is no abstract set constraint, these properties provide the connecting link between the classical constraint qualifications and two distinct pathways to the existence of Lagrange multipliers: one involving the notion of quasiregularity and the Farkas lemma, and the other involving the use of exact penalty functions. The second pathway also applies in the general case where there is an abstract set constraint.
Keywords: pseudonormality; informative Lagrange multipliers; constraint qualifications; exact penalty functions (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://link.springer.com/10.1023/A:1016083601322 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:114:y:2002:i:2:d:10.1023_a:1016083601322
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1016083601322
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().