Dynamic Programming in Digital Communications: Viterbi Decoding to Turbo Multiuser Detection
H.V. Poor
Additional contact information
H.V. Poor: Princeton University
Journal of Optimization Theory and Applications, 2002, vol. 115, issue 3, No 10, 629-657
Abstract:
Abstract Many important signal processing tasks in digital communications are based on integer programming problems whose raw complexity is extremely high. Such problems include the decoding of convolutional codes, channel equalization, multiuser detection, and the joint performance of these tasks. In each of these problems, the high complexity arises from the need to perform simultaneous processing on long sequences of finite-valued symbols in order to optimally detect or decode them. Fortunately, the complexity of these optimization problems can often be greatly reduced through the use of dynamic programming, which efficiently finds optimal [e.g., maximum likelihood (ML) or maximum a posteriori probability (MAP)] decisions in long sequences of symbols. This paper reviews four decades of progress in this area: the Viterbi algorithm for ML decoding of convolutional codes of the 1960s; the ML sequence detectors for channel equalization and the BCJR algorithm for MAP decoding of convolutional codes of the 1970s; the ML and MAP multiuser detectors of the 1980s; and combinations of these through the turbo processing of the 1990s.
Keywords: Dynamic programming; sequence detection; maximum likelihood detection; maximum a posteriori probability detection; channel decoding; channel equalization; multiuser detection; turbo processing (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1021259315279 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:115:y:2002:i:3:d:10.1023_a:1021259315279
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1021259315279
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().