Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm
A. Miele () and
T. Wang
Additional contact information
A. Miele: Rice University
T. Wang: Rice University
Journal of Optimization Theory and Applications, 2005, vol. 124, issue 1, No 2, 29-53
Abstract:
Abstract The ideal strategy for ship collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between a host ship and an intruder ship. This is a maximin problem or Chebyshev problem of optimal control in which the performance index being maximinimized is the distance between the two ships. Based on the multiple-subarc sequential gradient-restoration algorithm, a new method for solving the maximin problem is developed. Key to the new method is the observation that, at the maximin point, the time derivative of the performance index must vanish. With the zero derivative condition being treated as an inner boundary condition, the maximin problem can be converted into a Bolza problem in which the performance index, evaluated at the inner boundary, is being maximized wrt the controls. In turn, the Bolza problem with an added inner boundary condition can be solved via the multiple-subarc sequential gradient-restoration algorithm (SGRA). The new method is applied to two cases of the collision avoidance problem: collision avoidance between two ships moving along the same rectilinear course and collision avoidance between two ships moving along orthogonal courses. For both cases, we are basically in the presence of a two-subarc problem, the first subarc corresponding to the avoidance phase of the maneuver and the second subarc corresponding to the recovery phase. For stiff systems, the robustness of the multiple-subarc SGRA can be enhanced via increase in the number of subarcs. For the ship collision avoidance problem, a modest increase in the number of subarcs from two to three (one subarc in the avoidance phase, two subarcs in the recovery phase) helps containing error propagation and achieving better convergence results.
Keywords: Collision avoidance problems; ship collision avoidance; Chebyshev problems; Bolza problems; optimal control; multiple-subarc sequential gradient-restoration algorithm (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-004-6464-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:124:y:2005:i:1:d:10.1007_s10957-004-6464-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-004-6464-y
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().