EconPapers    
Economics at your fingertips  
 

On the Characterization of Quadratic Splines

B. T. Chen, K. Madsen and Stephen Zhang
Additional contact information
B. T. Chen: Washington State University
K. Madsen: Technical University of Denmark

Journal of Optimization Theory and Applications, 2005, vol. 124, issue 1, No 5, 93-111

Abstract: Abstract A quadratic spline is a differentiable piecewise quadratic function. Many problems in the numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines have been studied in the existing literature and algorithms have been developed on a case-by-case basis. There lacks an analytical representation of a general or even convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for a convex quadratic spline, it is shown that the representation can be refined in the neighborhood of a nondegenerate point and a set of nondegenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finitely convergent for a general convex quadratic spline. Finally, we study the relationship between the convexity of a quadratic spline function and the monotonicity of the corresponding linear complementarity problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general.

Keywords: Quadratic splines; convexity; linear complementarity problems; monotonicity (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-004-6467-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:124:y:2005:i:1:d:10.1007_s10957-004-6467-8

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-004-6467-8

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:124:y:2005:i:1:d:10.1007_s10957-004-6467-8