Superefficiency in Local Convex Spaces
J. H. Qiu ()
Additional contact information
J. H. Qiu: Suzhou University
Journal of Optimization Theory and Applications, 2007, vol. 135, issue 1, No 2, 19-35
Abstract:
Abstract In the framework of normed spaces, Borwein and Zhuang introduced superefficiency and gave its concise dual form when the underlying decision problem is convex. In this paper, we consider four different generalizations of the Borwein and Zhuang superefficiency in locally convex spaces and give their concise dual forms for convex vector optimization. When the ordering cone has a base, we clarify the relationship between Henig efficiency and the various kinds of superefficiency. Finally, we show that whether the four kinds of superefficiency are equivalent to each other depends on the normability of the underlying locally convex spaces.
Keywords: Locally convex spaces; Efficiency; Superefficiency; Henig efficiency; Dual forms (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-007-9211-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:135:y:2007:i:1:d:10.1007_s10957-007-9211-3
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-007-9211-3
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().