Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids
P. Kumar () and
E. A. Yıldırım ()
Additional contact information
P. Kumar: Florida State University
E. A. Yıldırım: Bilkent University
Journal of Optimization Theory and Applications, 2008, vol. 136, issue 2, No 4, 228 pages
Abstract:
Abstract Given a set of points $\mathcal{S}=\{x^{1},\ldots,x^{m}\}\subset \mathbb{R}^{n}$ and ε>0, we propose and analyze an algorithm for the problem of computing a (1+ε)-approximation to the minimum-volume axis-aligned ellipsoid enclosing $\mathcal{S}$ . We establish that our algorithm is polynomial for fixed ε. In addition, the algorithm returns a small core set $\mathcal{X}\subseteq \mathcal{S}$ , whose size is independent of the number of points m, with the property that the minimum-volume axis-aligned ellipsoid enclosing $\mathcal{X}$ is a good approximation of the minimum-volume axis-aligned ellipsoid enclosing $\mathcal{S}$ . Our computational results indicate that the algorithm exhibits significantly better performance than the theoretical worst-case complexity estimate.
Keywords: Axis-aligned ellipsoids; Enclosing ellipsoids; Core sets; Approximation algorithms (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-007-9295-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:136:y:2008:i:2:d:10.1007_s10957-007-9295-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-007-9295-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().