Probabilities of Pure Nash Equilibria in Matrix Games when the Payoff Entries of One Player Are Randomly Selected
J. M. Peterson () and
M. A. Simaan ()
Additional contact information
J. M. Peterson: University of Pittsburgh
M. A. Simaan: University of Pittsburgh
Journal of Optimization Theory and Applications, 2008, vol. 137, issue 2, No 9, 410 pages
Abstract:
Abstract The Nash equilibrium in pure strategies represents an important solution concept in nonzero sum matrix games. Existence of Nash equilibria in games with known and with randomly selected payoff entries have been studied extensively. In many real games, however, a player may know his own payoff entries but not the payoff entries of the other player. In this paper, we consider nonzero sum matrix games where the payoff entries of one player are known, but the payoff entries of the other player are assumed to be randomly selected. We are interested in determining the probabilities of existence of pure Nash equilibria in such games. We characterize these probabilities by first determining the finite space of ordinal matrix games that corresponds to the infinite space of matrix games with random entries for only one player. We then partition this space into mutually exclusive spaces that correspond to games with no Nash equilibria and with r Nash equilibria. In order to effectively compute the sizes of these spaces, we introduce the concept of top-rated preferences minimal ordinal games. We then present a theorem which provides a mechanism for computing the number of games in each of these mutually exclusive spaces, which then can be used to determine the probabilities. Finally, we summarize the results by deriving the probabilities of existence of unique, nonunique, and no Nash equilibria, and we present an illustrative example.
Keywords: Matrix games; Pure Nash equilibria; Ordinal games; Random payoffs (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-007-9333-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:137:y:2008:i:2:d:10.1007_s10957-007-9333-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-007-9333-7
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().