Optimal Starting Conditions for the Rendezvous Maneuver, Part 2: Mathematical Programming Approach
A. Miele () and
M. Ciarcià
Additional contact information
A. Miele: Rice University
M. Ciarcià: Rice University
Journal of Optimization Theory and Applications, 2008, vol. 137, issue 3, No 10, 625-639
Abstract:
Abstract In a companion paper (Part 1, J. Optim. Theory Appl. 137(3), [2008]), we determined the optimal starting conditions for the rendezvous maneuver using an optimal control approach. In this paper, we study the same problem with a mathematical programming approach. Specifically, we consider the relative motion between a target spacecraft in a circular orbit and a chaser spacecraft moving in its proximity as described by the Clohessy-Wiltshire equations. We consider the class of multiple-subarc trajectories characterized by constant thrust controls in each subarc. Under these conditions, the Clohessy-Wiltshire equations can be integrated in closed form and in turn this leads to optimization processes of the mathematical programming type. Within the above framework, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory.
Keywords: Space trajectories; Rendezvous; Optimization; Guidance; Transformation techniques; Mathematical programming; Sequential gradient-restoration algorithm (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-008-9356-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-008-9356-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-008-9356-8
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().