EconPapers    
Economics at your fingertips  
 

An Extension of Polyak’s Theorem in a Hilbert Space

A. Baccari () and B. Samet ()
Additional contact information
A. Baccari: Ecole Supérieure des Sciences et Techniques de Tunis
B. Samet: Ecole Supérieure des Sciences et Techniques de Tunis

Journal of Optimization Theory and Applications, 2009, vol. 140, issue 3, No 2, 409-418

Abstract: Abstract Let H be an infinite-dimensional real Hilbert space equipped with the scalar product (⋅,⋅) H . Let us consider three linear bounded operators, $$A_{i}:H\rightarrow H,\quad\,i=1,2,3.$$ We define the functions $$\begin{array}{rcl}\varphi_{i}(x)&=&(A_{i}x,x)_{H}+2(a_{i},x)_{H}+\alpha_{i},\quad\forall x\in H,\ i=1,2,\\[3pt]f_{i}(x)&=&(A_{i}x,x)_{H},\quad\forall x\in H,\ i=1,2,3,\end{array}$$ where a i ∈H and α i ∈ℝ. In this paper, we discuss the closure and the convexity of the sets Φ H ⊂ℝ2 and F H ⊂ℝ3 defined by $$\begin{array}{rcl}\Phi_{H}&=&\{(\varphi_{1}(x),\varphi_{2}(x))\mid x\in H\},\\[3pt]F_{H}&=&\{(f_{1}(x),f_{2}(x),f_{3}(x))\mid x\in H\}.\end{array}$$ Our work can be considered as an extension of Polyak’s results concerning the finite-dimensional case.

Keywords: Convexity; Closure; Quadratic functions; Hilbert space (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-008-9457-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:140:y:2009:i:3:d:10.1007_s10957-008-9457-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-008-9457-4

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:140:y:2009:i:3:d:10.1007_s10957-008-9457-4