Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization
N. Andrei ()
Additional contact information
N. Andrei: Center for Advanced Modeling and Optimization
Journal of Optimization Theory and Applications, 2009, vol. 141, issue 2, No 2, 249-264
Abstract:
Abstract In this paper a new hybrid conjugate gradient algorithm is proposed and analyzed. The parameter β k is computed as a convex combination of the Polak-Ribière-Polyak and the Dai-Yuan conjugate gradient algorithms, i.e. β k N =(1−θ k )β k PRP +θ k β k DY . The parameter θ k in the convex combination is computed in such a way that the conjugacy condition is satisfied, independently of the line search. The line search uses the standard Wolfe conditions. The algorithm generates descent directions and when the iterates jam the directions satisfy the sufficient descent condition. Numerical comparisons with conjugate gradient algorithms using a set of 750 unconstrained optimization problems, some of them from the CUTE library, show that this hybrid computational scheme outperforms the known hybrid conjugate gradient algorithms.
Keywords: Unconstrained optimization; Hybrid conjugate gradient method; Conjugacy condition; Numerical comparisons (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-008-9505-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9505-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-008-9505-0
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().