Simplicial Branch-and-Reduce Algorithm for Convex Programs with a Multiplicative Constraint
H. P. Benson ()
Additional contact information
H. P. Benson: University of Florida
Journal of Optimization Theory and Applications, 2010, vol. 145, issue 2, No 1, 213-233
Abstract:
Abstract Optimization problems that involve products of convex functions in the objective function or in the constraints arise in a variety of applications. These problems are difficult global optimization problems. During the past 15 years, however, a number of practical algorithms have been proposed for globally solving these types of problems. In this article, we present and validate a branch-and-reduce algorithm for finding a global optimal solution to a convex program that contains an additional constraint on the product of several convex functions. To globally solve this problem, the algorithm instead globally solves an equivalent master problem. At any stage of the algorithm, a disconnected set consisting of a union of simplices is constructed. This set is guaranteed to contain a portion of the boundary of the feasible region of the master problem where a global optimal solution lies. The algorithm uses a new branch-and-reduce scheme to iteratively reduce the sizes of these sets until a global optimal solution is found. Several potential computational advantages of the algorithm are explained, and a numerical example is solved.
Keywords: Global optimization; Multiplicative constraint; Nonconvex programming; Product of convex functions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-009-9636-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:145:y:2010:i:2:d:10.1007_s10957-009-9636-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-009-9636-y
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().