EconPapers    
Economics at your fingertips  
 

Spectral Scaling BFGS Method

W. Y. Cheng () and D. H. Li ()
Additional contact information
W. Y. Cheng: Dongguan University of Technology
D. H. Li: South China Normal University

Journal of Optimization Theory and Applications, 2010, vol. 146, issue 2, No 4, 305-319

Abstract: Abstract In this paper, we scale the quasiNewton equation and propose a spectral scaling BFGS method. The method has a good selfcorrecting property and can improve the behavior of the BFGS method. Compared with the standard BFGS method, the single-step convergence rate of the spectral scaling BFGS method will not be inferior to that of the steepest descent method when minimizing an n-dimensional quadratic function. In addition, when the method with exact line search is applied to minimize an n-dimensional strictly convex function, it terminates within n steps. Under appropriate conditions, we show that the spectral scaling BFGS method with Wolfe line search is globally and R-linear convergent for uniformly convex optimization problems. The reported numerical results show that the spectral scaling BFGS method outperforms the standard BFGS method.

Keywords: Unconstrained optimization; BFGS method; Global convergence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-010-9652-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:146:y:2010:i:2:d:10.1007_s10957-010-9652-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-010-9652-y

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:146:y:2010:i:2:d:10.1007_s10957-010-9652-y