Connectedness of Henig Weakly Efficient Solution Set for Set-Valued Optimization Problems
Q. S. Qiu () and
X. M. Yang ()
Additional contact information
Q. S. Qiu: Zhejiang Normal University
X. M. Yang: Chongqing Normal University
Journal of Optimization Theory and Applications, 2012, vol. 152, issue 2, No 9, 439-449
Abstract:
Abstract In this paper, we study Henig weakly efficient solutions for set-valued optimization problems. The connectedness of the Henig weakly efficient solution set is proved under the condition that the objective function be a cone-arcwise connected set-valued mapping. As an application of the result, we establish the connectedness of the set of super efficient solutions.
Keywords: Vector optimization; Henig weakly efficient solution; Super efficient solution; Set-valued mapping (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-011-9906-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:152:y:2012:i:2:d:10.1007_s10957-011-9906-3
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-011-9906-3
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().