Applying a Power Penalty Method to Numerically Pricing American Bond Options
Kuangyuan Zhang
Journal of Optimization Theory and Applications, 2012, vol. 154, issue 1, No 17, 278-291
Abstract:
Abstract In this paper, we aim to develop a numerical scheme to price American options on a zero-coupon bond based on a power penalty approach. This pricing problem is formulated as a variational inequality problem (VI) or a complementarity problem (CP). We apply a fitted finite volume discretization in space along with an implicit scheme in time, to the variational inequality problem, and obtain a discretized linear complementarity problem (LCP). We then develop a power penalty approach to solve the LCP by solving a system of nonlinear equations. The unique solvability and convergence of the penalized problem are established. Finally, we carry out numerical experiments to examine the convergence of the power penalty method and to testify the efficiency and effectiveness of our numerical scheme.
Keywords: Variational inequality problem; Option pricing; Penalty method; Finite volume method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-0004-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-0004-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-0004-y
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().