Theorems of the Alternative for Inequality Systems of Real Polynomials
Sheng-Long Hu () and
Zheng-Hai Huang ()
Additional contact information
Sheng-Long Hu: Tianjin University
Zheng-Hai Huang: Tianjin University
Journal of Optimization Theory and Applications, 2012, vol. 154, issue 1, No 1, 16 pages
Abstract:
Abstract In this paper, we establish theorems of the alternative for inequality systems of real polynomials. For the real quadratic inequality system, we present two new results on the matrix decomposition, by which we establish two theorems of the alternative for the inequality system of three quadratic polynomials under an assumption that at least one of the involved forms be negative semidefinite. We also extend a theorem of the alternative to the case with a regular cone. For the inequality system of higher degree real polynomials, defined by even order tensors, a theorem of the alternative for the inequality system of two higher degree polynomials is established under suitable assumptions. As a byproduct, we give an equivalence result between two statements involving two higher degree polynomials. Based on this result, we investigate the optimality condition of a class of polynomial optimization problems under suitable assumptions.
Keywords: Theorem of the alternative; Matrix decomposition; Polynomial system (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-9993-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-9993-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-9993-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().