General Class of Implicit Variational Inclusions and Graph Convergence on A-Maximal Relaxed Monotonicity
Ram U. Verma ()
Additional contact information
Ram U. Verma: Texas A&M University
Journal of Optimization Theory and Applications, 2012, vol. 155, issue 1, No 10, 196-214
Abstract:
Abstract Based on the generalized graph convergence, first a general framework for an implicit algorithm involving a sequence of generalized resolvents (or generalized resolvent operators) of set-valued A-maximal monotone (also referred to as A-maximal (m)-relaxed monotone, and A-monotone) mappings, and H-maximal monotone mappings is developed, and then the convergence analysis to the context of solving a general class of nonlinear implicit variational inclusion problems in a Hilbert space setting is examined. The obtained results generalize the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) involving the classical resolvents to the case of the generalized resolvents based on A-maximal monotone (and H-maximal monotone) mappings, while the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) added a new dimension to the classical resolvent technique based on the graph convergence introduced by Attouch (in Variational Convergence for Functions and Operators, Applied Mathematics Series, Pitman, London 1984). In general, the notion of the graph convergence has potential applications to several other fields, including models of phenomena with rapidly oscillating states as well as to probability theory, especially to the convergence of distribution functions on ℜ. The obtained results not only generalize the existing results in literature, but also provide a certain new approach to proofs in the sense that our approach starts in a standard manner and then differs significantly to achieving a linear convergence in a smooth manner.
Keywords: Variational inclusions; Graph convergence of mappings; Maximal monotone mapping; A-maximal monotone mapping; A-monotone mappings; A-maximal (m)-relaxed monotone mappings; Generalized resolvent operator; Classical resolvent (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-0030-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:155:y:2012:i:1:d:10.1007_s10957-012-0030-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-0030-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().