The Accuracy of Interior-Point Methods Based on Kernel Functions
Manuel V. C. Vieira ()
Additional contact information
Manuel V. C. Vieira: Universidade Nova de Lisboa
Journal of Optimization Theory and Applications, 2012, vol. 155, issue 2, No 16, 637-649
Abstract:
Abstract For the last decade, interior-point methods that use barrier functions induced by some real univariate kernel functions have been studied. In these interior-point methods, the algorithm stops when a solution is found such that it is close (in the barrier function sense) to a point in the central path with the desired accuracy. However, this does not directly imply that the algorithm generates a solution with prescribed accuracy. Until now, this had not been appropriately addressed. In this paper, we analyze the accuracy of the solution produced by the aforementioned algorithm.
Keywords: Linear optimization; Interior-point methods; Kernel functions (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-0071-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:155:y:2012:i:2:d:10.1007_s10957-012-0071-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-0071-0
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().