Alternating Minimization as Sequential Unconstrained Minimization: A Survey
Charles L. Byrne ()
Additional contact information
Charles L. Byrne: University of Massachusetts Lowell
Journal of Optimization Theory and Applications, 2013, vol. 156, issue 3, No 2, 554-566
Abstract:
Abstract Sequential unconstrained minimization is a general iterative method for minimizing a function over a given set. At each step of the iteration we minimize the sum of the objective function and an auxiliary function. The aim is to select the auxiliary functions so that, at least, we get convergence in function value to the constrained minimum. The SUMMA is a broad class of these methods for which such convergence holds. Included in the SUMMA class are the barrier-function methods, entropic and other proximal minimization algorithms, the simultaneous multiplicative algebraic reconstruction technique, and, after some reformulation, penalty-function methods. The alternating minimization method of Csiszár and Tusnády also falls within the SUMMA class, whenever their five-point property holds. Therefore, the expectation maximization maximum likelihood algorithm for the Poisson case is also in the SUMMA class.
Keywords: Optimization; Sequential unconstrained optimization; Alternating minimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-0134-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:156:y:2013:i:3:d:10.1007_s10957-012-0134-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-0134-2
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().