Metric Regularity of the Sum of Multifunctions and Applications
Huynh Van Ngai (),
Nguyen Huu Tron () and
Michel Théra ()
Additional contact information
Huynh Van Ngai: University of Quy Nhon
Nguyen Huu Tron: University of Quy Nhon
Michel Théra: Université de Limoges
Journal of Optimization Theory and Applications, 2014, vol. 160, issue 2, No 1, 355-390
Abstract:
Abstract The metric regularity of multifunctions plays a crucial role in modern variational analysis and optimization. This property is a key to study the stability of solutions of generalized equations. Many practical problems lead to generalized equations associated to the sum of multifunctions. This paper is devoted to study the metric regularity of the sum of multifunctions. As the sum of closed multifunctions is not necessarily closed, almost all known results in the literature on the metric regularity for one multifunction (which is assumed usually to be closed) fail to imply regularity properties of the sum of multifunctions. To avoid this difficulty, we use an approach based on the metric regularity of so-called epigraphical multifunctions and the theory of error bounds to study the metric regularity of the sum of two multifunctions, as well as some related important properties of variational systems. Firstly, we establish the metric regularity of the sum of a regular multifunction and a pseudo-Lipschitz multifunction with a suitable Lipschitz modulus. These results subsume some recent results by Durea and Strugariu. Secondly, we derive coderivative characterizations of the metric regularity of epigraphical multifunctions associated with the sum of multifunctions. Applications to the study of the behavior of solutions of variational systems are reported.
Keywords: Error bound; Metric regularity; Pseudo-Lipschitz property; Sum-stability; Variational systems; Coderivative (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-013-0385-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0385-6
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-013-0385-6
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().