Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm
Hoai An Le Thi () and
Mahdi Moeini ()
Additional contact information
Hoai An Le Thi: University of Lorraine
Mahdi Moeini: Technische Universität Braunschweig
Journal of Optimization Theory and Applications, 2014, vol. 161, issue 1, No 11, 199-224
Abstract:
Abstract In the matter of Portfolio selection, we consider an extended version of the Mean-Absolute Deviation (MAD) model, which includes discrete asset choice constraints (threshold and cardinality constraints) and one is allowed to sell assets short if it leads to a better risk-return tradeoff. Cardinality constraints limit the number of assets in the optimal portfolio and threshold constraints limit the amount of capital to be invested in (or sold short from) each asset and prevent very small investments in (or short selling from) any asset. The problem is formulated as a mixed 0–1 programming problem, which is known to be NP-hard. Attempting to use DC (Difference of Convex functions) programming and DCA (DC Algorithms), an efficient approach in non-convex programming framework, we reformulate the problem in terms of a DC program, and investigate a DCA scheme to solve it. Some computational results carried out on benchmark data sets show that DCA has a better performance in comparison to the standard solver IBM CPLEX.
Keywords: Portfolio selection; Cardinality constraints; Threshold constraints; Complementarity constraints; Mixed integer programming; DC programming; DCA (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-012-0197-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-012-0197-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-012-0197-0
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().