Variational Solutions to Nonlinear Diffusion Equations with Singular Diffusivity
Gabriela Marinoschi ()
Additional contact information
Gabriela Marinoschi: Romanian Academy
Journal of Optimization Theory and Applications, 2014, vol. 161, issue 2, No 5, 430-445
Abstract:
Abstract We provide existence results for nonlinear diffusion equations with multivalued time-dependent nonlinearities related to convex continuous not coercive potentials. The results in this paper, following a variational principle, state that a generalized solution of the nonlinear equation can be retrieved as a solution of an appropriate minimization problem for a convex functional involving the potential and its conjugate. In the not coercive case, this assertion is conditioned by the validity of a relation between the solution and the nonlinearity. A sufficient condition, under which this relation is true, is given. At the end, we present a discussion on the solution existence for a particular equation describing a self-organized criticality model.
Keywords: Variational methods; Brezis–Ekeland principle; Convex optimization problems; Nonlinear diffusion equations; Self-organized criticality; Sand-pile model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-013-0430-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:161:y:2014:i:2:d:10.1007_s10957-013-0430-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-013-0430-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().