A New Complexity Analysis for Full-Newton Step Infeasible Interior-Point Algorithm for Horizontal Linear Complementarity Problems
Behrouz Kheirfam ()
Additional contact information
Behrouz Kheirfam: Azarbaijan Shahid Madani University
Journal of Optimization Theory and Applications, 2014, vol. 161, issue 3, No 11, 853-869
Abstract:
Abstract In this paper, we first present a full-Newton step feasible interior-point algorithm for solving horizontal linear complementarity problems. We prove that the full-Newton step to the central path is quadratically convergent. Then, we generalize an infeasible interior-point method for linear optimization to horizontal linear complementarity problems based on new search directions. This algorithm starts from strictly feasible iterates on the central path of a perturbed problem that is produced by a suitable perturbation in the horizontal linear complementarity problem. We use the so-called feasibility steps that find strictly feasible iterates for the next perturbed problem. By using centering steps for the new perturbed problem, we obtain a strictly feasible iterate close enough to the central path of the new perturbed problem. The complexity of the algorithm coincides with the best known iteration bound for infeasible interior-point methods.
Keywords: Horizontal linear complementarity problem; Infeasible interior-point methods; Full-Newton step; Complexity analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-013-0457-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0457-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-013-0457-7
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().