Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem
Henri Bonnel () and
Julien Collonge ()
Additional contact information
Henri Bonnel: University of New Caledonia
Julien Collonge: University of New Caledonia
Journal of Optimization Theory and Applications, 2014, vol. 162, issue 2, No 5, 405-427
Abstract:
Abstract We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-objective Optimization Problem, whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation method in order to approach this problem. We prove that the Hausdorff–Pompeiu distance between the weakly Pareto sets associated with the Sample Average Approximation problem and the true weakly Pareto set converges to zero almost surely as the sample size goes to infinity, assuming that our Stochastic Multi-objective Optimization Problem is strictly convex. Then we show that every cluster point of any sequence of optimal solutions of the Sample Average Approximation problems is almost surely a true optimal solution. To handle also the non-convex case, we assume that the real objective to be minimized over the Pareto set depends on the expectations of the objectives of the Stochastic Optimization Problem, i.e. we optimize over the image space of the Stochastic Optimization Problem. Then, without any convexity hypothesis, we obtain the same type of results for the Pareto sets in the image spaces. Thus we show that the sequence of optimal values of the Sample Average Approximation problems converges almost surely to the true optimal value as the sample size goes to infinity.
Keywords: Optimization over a Pareto set; Optimization over the Pareto image set; Multi-objective stochastic optimization; Multi-objective convex optimization; Sample average approximation method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-013-0367-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-013-0367-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-013-0367-8
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().