Two-Sided Pareto Front Approximations
I. Kaliszewski () and
J. Miroforidis ()
Additional contact information
I. Kaliszewski: Polish Academy of Sciences
J. Miroforidis: Polish Academy of Sciences
Journal of Optimization Theory and Applications, 2014, vol. 162, issue 3, No 9, 845-855
Abstract:
Abstract A new approach to derive Pareto front approximations with evolutionary computations is proposed here. At present, evolutionary multiobjective optimization algorithms derive a discrete approximation of the Pareto front (the set of objective maps of efficient solutions) by selecting feasible solutions such that their objective maps are close to the Pareto front. However, accuracy of such approximations is known only if the Pareto front is known, which makes their usefulness questionable. Here we propose to exploit also elements outside feasible sets to derive pairs of such Pareto front approximations that for each approximation pair the corresponding Pareto front lies, in a certain sense, in-between. Accuracies of Pareto front approximations by such pairs can be measured and controlled with respect to distance between elements of a pair. A rudimentary algorithm to derive pairs of Pareto front approximations is presented and the viability of the idea is verified on a limited number of test problems.
Keywords: Multiobjective optimization; Evolutionary algorithms; Lower Pareto front approximations; Upper Pareto front approximations (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-013-0498-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0498-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-013-0498-y
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().