A Bidding Game with Heterogeneous Players
Alberto Bressan () and
Deling Wei ()
Additional contact information
Alberto Bressan: Penn State University
Deling Wei: Penn State University
Journal of Optimization Theory and Applications, 2014, vol. 163, issue 3, No 17, 1018-1048
Abstract:
Abstract A one-sided limit order book is modeled as a noncooperative game for several players. Agents offer various quantities of an asset at different prices, competing to fulfill an incoming order, whose size is not known a priori. Players can have different payoff functions, reflecting different beliefs about the fundamental value of the asset and probability distribution of the random incoming order. In a previous paper, the existence of a Nash equilibrium was established by means of a fixed point argument. The main issue discussed in the present paper is whether this equilibrium can be obtained from the unique solution to a two-point boundary value problem, for a suitable system of discontinuous ordinary differential equations. Some additional assumptions are introduced, which yield a positive answer. In particular, this is true when there are exactly two players, or when all players assign the same exponential probability distribution to the incoming order. In both of these cases, we also prove that the Nash equilibrium is unique. A counterexample shows that these assumptions cannot be removed, in general.
Keywords: Optimality conditions; Discontinuous ODE; Optimal pricing strategy; Bidding game; Nash equilibrium; Limit order book; 49K21; 49J21; 91A06; 91A13; 91A60 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-014-0551-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0551-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-014-0551-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().