Global Optimization of Protein–peptide Docking by a Filling Function Method
Francesco Lampariello () and
Giampaolo Liuzzi ()
Additional contact information
Francesco Lampariello: Consiglio Nazionale delle Ricerche
Giampaolo Liuzzi: Consiglio Nazionale delle Ricerche
Journal of Optimization Theory and Applications, 2015, vol. 164, issue 3, No 18, 1090-1108
Abstract:
Abstract Molecular docking programs play a crucial role in drug design and development. In recent years, much attention has been devoted to the protein–peptide docking problem in which docking of a flexible peptide with a given protein is sought. In this work, we present a docking algorithm which is based on the use of a filling function method for continuous global optimization. In particular, the protein–peptide docking position is found by minimizing the conformational potential free energy function based on a new approximate mathematical model. The resulting global optimization problem presents some difficulties, since it is a large-scale one and the objective function is non-convex, so that it has many local minima. To solve the problem, we adopt a global optimization method based on the use of a filling function to escape from local solutions. Moreover, in order to obtain more accurate results, we search the correct docking position by performing a two-phase optimization process. In particular, in a first step, only the carbon $$\mathrm{C}_\alpha $$ C α atoms of the protein and peptide are considered, thus obtaining an approximate docking solution. Then, the energy function is completed by considering all the peptide and protein atoms so that, starting from the solution of the first phase, the new minimization process gives a more accurate result. We present numerical results on a set of benchmark docking pairs and their comparison with those obtained by the known software package PacthDock for molecular docking.
Keywords: Protein–peptide docking; Potential free energy model; Continuous global optimization; 90C26; 90C30; 90C90 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-014-0525-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-014-0525-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-014-0525-7
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().