EconPapers    
Economics at your fingertips  
 

Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems

Giampaolo Liuzzi (), Stefano Lucidi () and Francesco Rinaldi ()
Additional contact information
Giampaolo Liuzzi: CNR
Stefano Lucidi: “Sapienza” Università di Roma
Francesco Rinaldi: Università di Padova

Journal of Optimization Theory and Applications, 2015, vol. 164, issue 3, No 11, 933-965

Abstract: Abstract Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables, which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming problems with general nonlinear constraints and explicit handling of bound constraints on the problem variables. We use an exterior penalty approach to handle the general nonlinear constraints and a local search approach to take into account the presence of discrete variables. We show that the proposed algorithms globally converge to points satisfying different necessary optimality conditions. We report a computational experience and a comparison with a well-known derivative-free optimization software package, i.e., NOMAD, on a set of test problems. Furthermore, we employ the proposed methods and NOMAD to solve a real problem concerning the optimal design of an industrial electric motor. This allows to show that the method converging to the better extended stationary points obtains the best solution also from an applicative point of view.

Keywords: Mixed integer nonlinear programming; Derivative-free optimization; Nonlinear constrained optimization; 90C11; 90C30; 90C56 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-014-0617-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-014-0617-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-014-0617-4

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-014-0617-4