EconPapers    
Economics at your fingertips  
 

How to Deal with Non-Convex Frontiers in Data Envelopment Analysis

K. Tone () and M. Tsutsui ()
Additional contact information
K. Tone: National Graduate Institute for Policy Studies
M. Tsutsui: Central Research Institute of Electric Power Industry

Journal of Optimization Theory and Applications, 2015, vol. 166, issue 3, No 16, 1002-1028

Abstract: Abstract In data envelopment analysis, we are often puzzled by the large difference between the constant-returns-scale and variable returns-to-scale scores, and by the convexity production set syndrome in spite of the S-shaped curve, often observed in many real data sets. In this paper, we propose a solution to these problems. Initially, we evaluate the constant-returns-scale and variable returns-to-scale scores for all decision-making units by means of conventional methods. We obtain the scale-efficiency for each decision-making unit. Using the scale-efficiency, we decompose the constant-returns-scale slacks for each decision-making unit into scale-independent and scale-dependent parts. Following this, we eliminate scale-dependent slacks from the data set, and thus obtain a scale-independent data set. Next, we classify decision-making units into several clusters, depending either on the degree of scale-efficiency or on some other predetermined characteristics. We evaluate slacks of scale-independent decision-making units within the same cluster using the constant-returns-scale model, and obtain the in-cluster slacks. By summing the scale-dependent and the in-cluster slacks, we define the total slacks for each decision-making unit. Following this, we evaluate the efficiency score of the decision-making unit and project it onto the efficient frontiers, which are no longer guaranteed to be convex and are usually non-convex. Finally, we define the scale-dependent data set by which we can find the scale elasticity of each decision-making unit. We apply this model to a data set of Japanese universities’ research activities.

Keywords: Data envelopment analysis; S-shaped curve; Constant returns-to-scale; Variable returns-to-scale; Scale elasticity; 90C05; 90B50; 91B06; 91B38 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-014-0626-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-014-0626-3

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-014-0626-3

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-014-0626-3