EconPapers    
Economics at your fingertips  
 

Error Sensitivity for Strongly Convergent Modifications of the Proximal Point Algorithm

Yamin Wang (), Fenghui Wang () and Hong-Kun Xu ()
Additional contact information
Yamin Wang: Henan Normal University
Fenghui Wang: Luoyang Normal University
Hong-Kun Xu: Hangzhou Dianzi University

Journal of Optimization Theory and Applications, 2016, vol. 168, issue 3, No 10, 916 pages

Abstract: Abstract The proximal point algorithm plays an important role in finding zeros of maximal monotone operators. It has however only weak convergence in the infinite-dimensional setting. In the present paper, we provide two contraction-proximal point algorithms. The strong convergence of the two algorithms is proved under two different accuracy criteria on the errors. A new technique of argument is used, and this makes sure that our conditions, which are sufficient for the strong convergence of the algorithms, are weaker than those used by several other authors.

Keywords: Proximal point algorithm; Contraction-proximal point algorithm; Maximal monotone operator; Resolvent; Strong convergence; 47H05; 47J25; 65K15; 90C25 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-015-0835-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0835-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-015-0835-4

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0835-4