The Algebraic Structure of the Arbitrary-Order Cone
Baha Alzalg ()
Additional contact information
Baha Alzalg: The University of Jordan
Journal of Optimization Theory and Applications, 2016, vol. 169, issue 1, No 3, 32-49
Abstract:
Abstract We study and analyze the algebraic structure of the arbitrary-order cones. We show that, unlike popularly perceived, the arbitrary-order cone is self-dual for any order greater than or equal to 1. We establish a spectral decomposition, consider the Jordan algebra associated with this cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner product. We generalize some important notions and properties in the Euclidean Jordan algebra of the second-order cone to the Euclidean Jordan algebra of the arbitrary-order cone.
Keywords: pth-order cones; Second-order cones; Euclidean Jordan algebras (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-016-0878-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:169:y:2016:i:1:d:10.1007_s10957-016-0878-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-016-0878-1
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().