Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers
Lukáš Adam () and
Martin Branda ()
Additional contact information
Lukáš Adam: Czech Academy of Sciences
Journal of Optimization Theory and Applications, 2016, vol. 170, issue 2, No 5, 419-436
Abstract:
Abstract We deal with chance constrained problems with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity constraints and regularize it by enlarging the set of feasible solutions. For all considered problems, we derive necessary optimality conditions based on Fréchet objects corresponding to strong stationarity. We discuss relations between stationary points and minima. We propose two iterative algorithms for finding a stationary point of the original problem. The first is based on the relaxed reformulation, while the second one employs its regularized version. Under validity of a constraint qualification, we show that the stationary points of the regularized problem converge to a stationary point of the relaxed reformulation and under additional condition it is even a stationary point of the original problem. We conclude the paper by a numerical example.
Keywords: Chance constrained programming; Optimality conditions; Regularization; Algorithms; Free MATLAB codes; 90C15; 90C26; 49M05 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-016-0943-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:170:y:2016:i:2:d:10.1007_s10957-016-0943-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-016-0943-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().