On the Solution Uniqueness Characterization in the L1 Norm and Polyhedral Gauge Recovery
Jean Charles Gilbert ()
Additional contact information
Jean Charles Gilbert: INRIA Paris
Journal of Optimization Theory and Applications, 2017, vol. 172, issue 1, No 5, 70-101
Abstract:
Abstract This paper first proposes another proof of the necessary and sufficient conditions of solution uniqueness in 1-norm minimization given recently by H. Zhang, W. Yin, and L. Cheng. The analysis avoids the need of the surjectivity assumption made by these authors and should be mainly appealing by its short length (it can therefore be proposed to students exercising in convex optimization). In the second part of the paper, the previous existence and uniqueness characterization is extended to the recovery problem where the L1 norm is substituted by a polyhedral gauge. In addition to present interest for a number of practical problems, this extension clarifies the geometrical aspect of the previous uniqueness characterization. Numerical techniques are proposed to compute a solution to the polyhedral gauge recovery problem in polynomial time and to check its possible uniqueness by a simple linear algebra test.
Keywords: Basis pursuit; Convex polyhedral function; Gauge recovery; L1 minimization; Minkowski function; Optimality conditions; Sharp minimum; Solution existence and uniqueness; 65K05; 90C05; 90C25; 90C46 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-016-1004-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:172:y:2017:i:1:d:10.1007_s10957-016-1004-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-016-1004-0
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().