An Approach for Analyzing the Global Rate of Convergence of Quasi-Newton and Truncated-Newton Methods
T. L. Jensen () and
M. Diehl ()
Additional contact information
T. L. Jensen: Aalborg University
M. Diehl: University of Freiburg
Journal of Optimization Theory and Applications, 2017, vol. 172, issue 1, No 12, 206-221
Abstract:
Abstract Quasi-Newton and truncated-Newton methods are popular methods in optimization and are traditionally seen as useful alternatives to the gradient and Newton methods. Throughout the literature, results are found that link quasi-Newton methods to certain first-order methods under various assumptions. We offer a simple proof to show that a range of quasi-Newton methods are first-order methods in the definition of Nesterov. Further, we define a class of generalized first-order methods and show that the truncated-Newton method is a generalized first-order method and that first-order methods and generalized first-order methods share the same worst-case convergence rates. Further, we extend the complexity analysis for smooth strongly convex problems to finite dimensions. An implication of these results is that in a worst-case scenario, the local superlinear or faster convergence rates of quasi-Newton and truncated-Newton methods cannot be effective unless the number of iterations exceeds half the size of the problem dimension.
Keywords: Quasi/truncated-Newton methods; First-order methods; Complexity analysis; 90C53; 49M15; 47N10 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-016-1013-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:172:y:2017:i:1:d:10.1007_s10957-016-1013-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-016-1013-z
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().