Duality Theorems for Separable Convex Programming Without Qualifications
Satoshi Suzuki () and
Daishi Kuroiwa ()
Additional contact information
Satoshi Suzuki: Shimane University
Daishi Kuroiwa: Shimane University
Journal of Optimization Theory and Applications, 2017, vol. 172, issue 2, No 16, 669-683
Abstract:
Abstract In the research of mathematical programming, duality theorems are essential and important elements. Recently, Lagrange duality theorems for separable convex programming have been studied. Tseng proves that there is no duality gap in Lagrange duality for separable convex programming without any qualifications. In other words, although the infimum value of the primal problem equals to the supremum value of the Lagrange dual problem, Lagrange multiplier does not always exist. Jeyakumar and Li prove that Lagrange multiplier always exists without any qualifications for separable sublinear programming. Furthermore, Jeyakumar and Li introduce a necessary and sufficient constraint qualification for Lagrange duality theorem for separable convex programming. However, separable convex constraints do not always satisfy the constraint qualification, that is, Lagrange duality does not always hold for separable convex programming. In this paper, we study duality theorems for separable convex programming without any qualifications. We show that a separable convex inequality system always satisfies the closed cone constraint qualification for quasiconvex programming and investigate a Lagrange-type duality theorem for separable convex programming. In addition, we introduce a duality theorem and a necessary and sufficient optimality condition for a separable convex programming problem, whose constraints do not satisfy the Slater condition.
Keywords: Separable convex programming; Duality theorem; Constraint qualification; Generator of quasiconvex functions; 90C25; 26B25 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-016-1003-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:172:y:2017:i:2:d:10.1007_s10957-016-1003-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-016-1003-1
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().