A Two-on-One Linear Pursuit–Evasion Game with Bounded Controls
Shmuel Y. Hayoun () and
Tal Shima ()
Additional contact information
Shmuel Y. Hayoun: Technion-Israel Institute of Technology
Tal Shima: Technion-Israel Institute of Technology
Journal of Optimization Theory and Applications, 2017, vol. 174, issue 3, No 13, 837-857
Abstract:
Abstract A linearized engagement with two pursuers versus a single evader is considered, in which the adversaries’ controls are bounded and have first-order dynamics and the pursuers’ intercept times are equal. Wishing to formulate the engagement as a zero-sum differential game, a suitable cost function is proposed and validated, and the resulting optimization problem and its solution are presented. Construction and analysis of the game space is shown, and the players’ closed-form optimal controls are derived for the case of two “strong” pursuers. The results are compared to those of a 1-on-1 engagement with a “strong” pursuer, and it is shown that the addition of a second pursuer enlarges the capture zone and introduces a new singular zone to the game space, in which the pursuers can guarantee equal misses, regardless of the evader’s actions. Additionally, it is concluded that in the regular zones the closed-form optimal pursuit strategies are unchanged compared to two 1-on-1 engagements, whereas the optimal evasion strategy is more complex. Several simulations are performed, illustrating the adversaries’ behavior in different regions of the game space.
Keywords: Differential games; Pursuit–evasion; Missile guidance; 49N70; 49N75 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-017-1142-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:174:y:2017:i:3:d:10.1007_s10957-017-1142-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-017-1142-z
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().